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Calibration of a System for the
Computer-Assisted Operation of a Small
Animal Inhalation Facility

by Ethard W. Van Stee* and Michael P. Moorman*

The initialization of chambers in the computer-assisted inhalation facility at the Na-
tional Institute of Environmental Health Sciences (1} includes a series of operations that
we call “characterization.” Characterization consists of two parts, the first of which is one
of the topics of this report. In the first part of the characterization the mathematical
relationship between the concentration of the chemical of interest and the ocutput of the
anhalyzer is approximated. This amounts to establishing a standard against which subse-
quent, daily calibrations can be compared. The second part of the characterization
represents a wholly automatic operation in which certain dynamic characteristics of the
system are quantified.

A daily calibration is performed at the beginning of each day of chamber operation
after the system has been characterized. The daily calibration data are checked against
the characterization standard. The conversion equation for the daily operation of the
chamber is derived from the daily calibration data combined with the characterization
data.

An equation that converts the output of the analyzer to units of concentration of the
chemical of interest is at the heart of the computer-assisted monitoring and control
system for our inhalation facility. The equation is derived from a calibration procedure
that is conducted prior to starting each day’s chamber operation. Quality control re-
quires that, in addition to having a daily calibration of the system, a standard of reference
be available against which each day’s calibration data can be checked. This practice
provides protection against the introduction of spurious calibration data on a daily basis,
as well as providing a means for the detection of longer term drift.

A simulation program was written to model the computations prior to installation of the
task as part of the operating system for the facility. The program allowed repeated
characterization and calibration operations to be simulated in a relatively short period
for the purpose of refining certain details governing the operation of the task. The
simulated raw data were based on actual performance records of several chamber

operators.

Chamber Characterization
Summary

Prior to starting a new series of exposures a
procedure is performed that we call “characteriza-
tion.” Characterization consists of two parts: es-
tablishing a calibration standard to which subse-
quent daily calibration data are compared and
quantifying dynamic properties of the system.

Figure 1 represents a general outline of the
sequence of computations from which the calibra-
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tion standard is derived. The analyzer is purged
with zero air and the electrometer is zeroed. Re-
setting zero is not permitted during the following
operation. Aliquots of standard chemical are in-
jected sequentially into the calibration loop in
increments that have been computed to yield six
concentrations in order of increasing concentra-
tion. The operator pushes a button in between
each injection to signal the system to read the
analyzer. After each sixth injection the operator
purges the calibration loop with zero air and the
sequential injection process is repeated. The cycle
is repeated 10 times during which the computer
logs the equivalent of 10, consecutive six-point
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calibrations consisting of zero and six concentra-
tions.

The initial array of concentration-analzyer re-
sponse data is represented in the upper left hand
quadrant of Figure 1. Having provisionally ac-
cepted the first 10 rows of data (moving counter-
clockwise in Figure 1), the computer performs a
polynomial filting and stepwise reduction opera-
tion on the data (2). The polynomial that we fit
represents a “no-intercept model” (3), i.e., it does
not include a zero-order (constant) term, and
thus, in a graphical sense, forces a plot of the
function through the origin. The algorithm first
fits a fourth-order polynomial to the data and
then tests the significance of the estimated coeffi-
cients after computing their respective partial F
ratios.

The user will have provided the computer sys-
tems with critical values for these F ratios
against which the computed, partial F ratios will
be compared. Selection of the critical values was
based on the outcorne of a computer simulation
{q.v.).

The polynomial reduction process begins by
testing the coefficient of the fourth-order term. If
the F ratio for the coefficient exceeds the critical
value the associated term is accepted as the sig-
nificant term of maximum degree. If the value of
the F ratio is less than the critical value, the
coefficient of the third-order term is tested. The
process is continued until the first significant
coefficient is encountered. Once the polynomial of
a degree represented by the significant coefficient
of highest order has been fitted to the original raw
data, the machine computes an F ratio for varia-
tion among the rows (4). As in the case of the
critical values for the F ratios for the coefficients,
the user will have supplied the system with a
critical value for an F ratio for variation among
the rows that is determined by his needs.

If the F ratio for variation among the rows is
less than the critical value, the 10 rows are ac-
cepted. If the F ratio is greater than the critical
value a polynomial is refitted to the data (Fig. 1,
lower left center) and the operator is instructed to
make six additional, incremental injections of
chemical into the calibration loop, thus creating
an 11th row of data.

Moving counterclockwise in Figure 1, an analy-
sis of homogeneity is performed on all 11 combi-
nations of 10 rows using the degree of polynomial
that was most recently computed. Again the ¥
ratios are tested against the critical values and
the combination yielding the smallest F-ratio is
retained. The computational sequence continues
until 10 rows of homogeneneous data have been
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FIGURE 1. This is an illustration of the algorithm that is used
to create an'initial 10 rows of homogeneous calibration
data. Subsequent daily calibration data are compared to
the 10 rows of data for the purpose of generating the daily
control equation (see text for details).

aquired or until the computational process is
overridden.

Characterization Algorithm and
Computations

The operator executes a series of sequential
injections of standard chemical into the calibra-
tion loop of the analyzer that results in the filling
of a matrix of raw data.

Analyzer

reading

Rowl (0) Y(1,1) ...

Row 2 (0} .

Bow 3 (0) .

Row 4 (0)

Row 5 (0)

Row 6 (0)

Row 7 (O)

Row 8 (0} .

Row 9 (0) . A

Row 10 (0) Y(10,1)... ... ... ... Y(10,6)
X0 X(1) X(2)X(3) X(4) X(5)X(®6)

PPM

. Y(1,6)

1)

Immediately following the 60th injection the
polynomial fitting routine begins execution. The
X'X matrix (2) is computed from the 60 values of
x, i.e., the concentrations in ppm of standard
chemical that were associated with each analyzer
reading. The values of x have been computed
previously in response to the interactive query
session, The elements of the & vector are the
coefficients to be estimated. The elements of the
X'Y vector are the sums of cross-products,
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[X'X] B [X'Y]
TX: IX® ¥X¢+ ILX® b,  IXY
IX8 EX* X5 IX* b, = IXY
X+ X5 EX¢ EX? b,  IX3Y
IX* IX® IX’7 XX* b,  EIXY

2)

The coefficients are estimated by inverting the
X'X-matrix and multiplying by the X'Y-vector
(5).

Thus

XXb=XY (3)
becomes
b=XX)X'Y (@)
where b is the estimate of b.

Examination of an analysis of variance table
for a regression analysis (Table 1) provides an
illustration of the logic behind the sequence of
computations that is used to select the highest
polynomial of “best fit,” i.e., the polynomial of
highest order with a statistically significant coeffi-
cient for the highest order. Note that at this stage
the regression computation results in the fitting

of a single curve common to all of the data points
by the method of least squares.

The total sum of squares (85T) is divided into
the fraction that is determined by regression
{RegS8), i.e., determined by the dependence of y
on x, and the remainder, or residual, ResSS. Since
the test for the significance of each term is based
on a ratio of the associated partial RegMS and the
ResMS it is necessary to go through a series of
computations that will result in a partitioning of
the RegSS.

The computations are based on Eqs. (3) and (4)
and are performed on the matrix and vectors of
Eq. (2) or on matrices and vectors that are modi-
fied from Eq. (2). RegSS (4), RegSS (3), RegSS (2),
and RegS85(1) [see Egs. (5), (6), (8), (10)] are the
regression sums of squares that are associated
with polynomials of fourth, third, second, and
first order, respectively. Note that the summa-
tions that are indicated or used are taken over the
entire 60 data points.

Computation of the Sum of Squares
for Regression for a Fourth-Order
Polynomial

SSReg(4) = bZXY + b,IX?Y + 5,ZX3Y +

bEIX1Y — (ZY)%60  (5)

Table 1.
Degrees of Sums of Mean

Source of variation freedom squares squares
Regression 4 SSReg MSReg

X term 1

X2 term 1

X3 term 1

X4 term 1
Residual 55 SSRes MSRes
Total 59 SST

The coefficients &,, . .., b, are estimated exactly
as indicated in Eqgs. (2), (3) and (4), i.e., the X'X-
matrix is inverted and multiplied by the X'Y-
vector.

Computation of the Sum of Squares
for Regression for a Third-Order
Polynomial

SSReg(3) = b,ZXY + b,EX?Y
+ BEIXSY — (ZY)2/60  (6)

The coefficients by, ..., b; are estimated from a
matrix and vectors that are modified from Eq. (2),
i.e., the last row and column of the X' X-matrix
and the last elements of the - and X'Y-vectors,
respectively, are eliminated. The estimates of b,,
..., by, are the solutions to Eq. (7):

X'X; (6] [X'Y]
IX? IX® X by XY
X3 IX* IXG b, = IX2Y
X+ IX5  TX6 b,  IXY

(7)

Computation of the Sums of Squares
for Regression for a Second-Order
Polynomial

SSReg(2) = b3XY + b3SX2Y — (SY)H60 (8)

The coefficients b, and b, are estimated from a
matrix and vectors that are modified from Eq. (7),
1.e,, the last row and column of the X' X-matrix
and the last elements of the b— and X'Y vectors,
respectively, are eliminated. The estimates of b,
and b, are the solutions to Eq. (9):

(X'X] bl XY
¥X: IX% b, IXY
¥X* IX* b, = IX2Y

)]
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Table 2.

Source of Regression Source of Regression

variation sum of squares added variation sum of squares
X RegSS(1) X, RegSS(1}
X+X2 RegS5(2) A RegSS8(2)-RegSS(1)
X+X2+X8 RegSS(3) X RegSS5(3}-RegSS5(2)
X+X2+X3+X4 RegSS(4) X, RegSS(4)-RegSS(3)

Table 3.

Computation of the Sums of Squares
for Regression for First-Order
Polynomial

SSReg(l) = 3XY — GY)¥60  (10)
The coefficient I;l is estimated according to
b, = SXY/3.X? (11)

in which 2XY and 3X? are the first elements of
the X'Y and X'X matrices of Eq. (2), respectively.

Degrees of Freedom

The number of degrees of freedom associated
with RegSS is equal to the arithmetic value of the
exponent of the term of highest order, initially, 4.
One degree of freedom is associated with each X
term of the polynomial. The number of degrees of
freedom that is associated with SST is equal to
one fewer than the total number of data peints,
ie, 60 — 1 = 59. The number of degrees of
freedom for ResSS is the difference between that
of the total sum of squares (SST) and that of the
regression sum of squares (RegSS).

Partition of the Regression Sum of
Squares

The regression sum of squares is partitioned
into components that are associated with the re-
spective X-terms. The RegSS that were computed
in Eqgs. (5), (6), (8) and (10) are tabulated to the
left in Table 2. Consecutive differences are tabu-
lated to the right in Table 2.

Total Sum of Squares

The total sum of squares [Eq. (12)] is equal to
the sum of the squares of each analyzer reading,
the Y (i,/) of (1), minus the square of the sum of
the Y (i,/) divided by the total number of readings,
ie.,

SST = 2Y2 — (2Y)¥60 (12)

To obtain F ratio for

Coefficient of X term

Coefficient of X2 term
Coefficient of X3 term
Coefficient of X4 term

Residual mean square, ResMS

ResMS(1) = [SST-RegSS(1)1/568
ResMS(2) = [SST-RegSS(2)1/57
ResMB3(3) = [SST-RegS55(3))/66
ResMS(4) = [SST-RegSS(4))/65

Table 4.

F Ratio

RegSS(1)/ResMS(1)

[RegSS(2)-RegB3S(1))/ResMS(2)
[RegS5(3)-RegSS(2)1/ResMS(3)
[RegSS(4)-RegS53(3))/ResMS(4)

Test of Significance of Coefficients of
Polynomial

The coefficients are tested by computing F ra-
tios for each one. These are the partial F ratios of
the regression analysis and they are obtained by
dividing the mean square associated with the
difference between the two, consecutive polyno-
mial models by the residual mean square that is
associated with the polynomial medel of higher
order (Table 3). -

In our case the F ratios that correspond to the
respective coefficients are computed by dividing
the appropriate differences between regression
sums of squares (RegSS) by the appropriate resid-
ual mean squares (ResMS) (Table 4). When com-
puting the numerators of the F ratios, the differ-
ence between the two RegSS is divided by the
appropriate degrees of freedom which, in this
special case, equals one.

The user must select criteria for the rejection of
coefficients. The criteria may be critical values for
the F ratio that have been selected from tables of
F ratios that are commonly found in statistics
books. If the computed value for the F ratio that
corresponds to the coefficient of the term of high-
est order is greater than the critical value the
term can be considered to be significant and,
therefore, should be retained. Alternatively, if
the computed F ratio is less than the critical
value, the term can be rejected. In the testing of
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statistical hypotheses critical values for the F
ratios are selected on the basis of the probability
of committing a Type I error, i.e., in this case,
retaining the term when the coefficient is, in fact,
not significantly different from zera.

A particular characteristic of the application of
a stepwise regression analysis to our data influ-
ences our selection of the critical values for the F
ratios. Somewhat overfitting the data incurs little
penalty so long as a monotonic relationship be-
tween concentration and response is preserved.
Therefore, if we err in retaining a nonsignificant
term (Type 1 error) we may not encounter any
problem beyond that of the extra computation
that would be associated with the unnecessary
terms. Eliminating a significant term (Type II
error) could be more serious since the shape of the
concentration-analyzer response curve could be
seriously affected. Thus, since the two error prob-
abilities are inversely related, selecting critical
values of F corresponding to probabilities (of com-
mitting a Type I error) of 0.05-0.10 will be less
likely to result in rejecting significant terms than
if the critical values are selected to correspond to
probabilities of 0.01 or less. The critical values of
F that are selected are associated with 1 (numera-
tor) and 55, 56, 57 or 58 (denominator) degrees of
freedom, depending on whether the order of the
polynomial of higher order is 4, 3, 2 or 1. The
stepwise elimination is performed according to
algorithm (13).

no
IfF(X*term) < Ficrith — — — Select 4th-degree polynomial
|

yes

'
no
If F(X3 term) < Ferit) — — — Select 3rd-degree polynomial
|

yes

)
ne
If F(X2term) < Fcrit) — — — Select 2nd-degree polynomial
I
yes
!
no
<t Flerit) — — - Select 1st-degree polynomial
I
yes

4

This branch would be

reached only when there

was no dependence of the
analyzer reading on the
concentration of chemical

and, therefore, would

represent an error condition
requiring operator intervention.

If F(X term)

(13)

Following selection of a degree of polynomial of
less than fourth-order, the algorithm returns to
Eq. (7) in the case of third-order, Eq. (9) in the
case of second-order or Eq. (11) in the case of first-
order, and re-estimates the coefficients.

Building a Homogeneous
Characterization Data Base

Estimates of the coefficients of the polynomial
that best fits the 10 rows of calibration data have
been determined by this point and have been
provisionally accepted only for the purpose of
finding what degree of polynomial to use. No
attempt has yet been made to assess the homoge-
neity of those rows of data, each of which repre-
sents the equivalent of a six-point calibration.
Conceptually, the algorithm has found the best-
fitting curve that is common to all 60 data points.

The next step involves quantifying mathemati-
cally definable differences among the 10 rows of
data with the aim of rejecting and replacing one
or more rows of data that are unacceptable based
on a defined set of criteria. Rejected rows of data
are replaced with new data derived from addi-
tional injections that are performed by the opera-
tor. Presumably, better and better rows of data
are accumulated until 10 are accepted. The basis
of that sequence of computations is illustrated in
the analysis of variance table (Table 5). Note that
the summations that are indicated or used in
Tables 5-7 and Eq. (14) are now taken over the 10
rows of data rather than over the 60 data points.

Table 5.
Source of variation Regression SS
Common curve RegS5(1,2,3 or 4)a
Among rows ZRegSS-Reg8S5(1,2,3 or 4)
Pooled residual ZResSS

aThe common curve represents the result of the computa-
tions that were described above.

Table 6.

RegS8 ResSS
RegBSa ResSSb

= g

R R N ]

lomaeoaoooo|
=

TRegSS ZhesSS = Pooled residual S8

aRegression SS computed for each row individually.
bResidual 58S computed for each row individually.



316 VAN STEE AND MOORMAN

Table 7.

Degrees of Freedom

Order of polynomial selected

Source of variation 1st 2nd 3rd 4th
“Among rows” RegS5 10 20 30 40
Pooled residual SSa 40 30 20 10

adf{pooled residual) = df{total) — df(“among rows”).

The homogeneity of the curves that represent
the 10 rows of data varies as an inverse function
of the ratio of the “among rows” regression mean
square to the pooled residual mean square. Mean
squares are obtained by dividing sums of squares
by their corresponding degrees of freedom. The
sums of squares for this computation are accumu-
lated as illustrated in Table 6.

Calculation of the RegSS and ResSS for each
row follows a computational scheme analogous to
that of Egs. (2) and (5) in the case of a fourth-
order polynomial, Egs. (6) and (7) in the case of a
third-order polynomial, Egs. (8) and (9) in the
case of a second-order polynomial, and Eqs. (10)
and (11) in the case of a first-order polynomial.
Since the raw data for each computation consist of
six pairs of concentration-response data from the
analyzer, n equals 6 rather than 60 as in Egs. (5),
{6}, (8) and (10). The “among rows” sum of squares
in Table 5 is the arithmetic sum of the RegSS for
the 10, individual eurves minus the “common
curve” RegSS, and the pooled residual sum of
squares equals the arithmetic sum of the corre-
sponding ResSS,

An F ratio for homogeneity of the 10 rows of
data (lower center of Fig. 1) is obtained by divid-
ing the “among lines” regression mean square by
the pooled residual mean square. The mean
squares are obtained from the sums of squares by
dividing them by the appropriate degrees of free-
dom as tabulated in Table 7. The total degrees of
freedom will be 10 (n — 1) = 50, where 10 is the
number of rows. The degrees of freedom of the
numerator will be the order of the polynomial
(exponent of the term of highest order) times the
number of rows minus one.

The user must select a critical value for use in
algorithm (14) for comparison with the F ratio for
homogeneity of the 10 rows of calibration data of
which the characterization data matrix (1) is com-
posed. The critical value should be selected to
correspond to the order of the polynomial.

The null hypothesis states that the curves that
are fitted to each of the rows are the same. Com-
mitting a Type I error would result in rejecting
the hypothesis when it was true. The cost of

committing a Type I error is realized as a require-
ment on the part of the operator to create an 11th
line of data, i.e., make six additional standard
injections. The cost of committing a Type II error,
rejecting the alternative hypothesis that the lines
are not homogeneous when it is true, is in the
magnitude of the standard error of the estimates
of the coefficients that are used in judging the
acceptability of subsequent daily calibration
data. Because of the nature of the scheme that is
employed for establishing the criterion of accept-
ance of the daily calibration data, the penalty for
committing a Type I error is actually greater than
the penalty for committing a Type II error. The
greater the critical value of F, the lower the
probability of committing a Type I error. There-
fore, as a general recommendation, F(critical)
should be selected to correspond to probabilities
in the range of 0.05-0.01 (of committing a Type I
error), although the actual values may be varied
to suit the particular needs of the user.

Computed F ratio no
for homogeneity — — — If F(homo) < F(crit) — — — Accept
of 10 rows |
yes
+

10 rows are not

similar enough to

accept; operator

creates 11th row.

(14)

When the first 10 rows of data are not homoge-
neous according to Eq. (14), the operator is in-
structed to create an 11th row of data. A variation
of a previously described computational sequence
is activated to select the 10 best of 11 rows of data.
Essentially, the polynomial is refitted and then
the algorithm loops back to Table 6 and proceeds
to the point of the branch in Eq. (14) for 11
iterations, each of which includes a different sam-
ple of 10 rows. During each iteration an F ratio
for homogeneity of rows is computed. The group of
10 rows with the lowest F ratio for homogeneity is
then used for the subsequent calculations.

The decision-making process continues exactly
as in Eq. (14) from this point. The operator is
required to make successive series of six standard
injections until 10 have been accumulated with
an “among rows” F ratio that is less than the
critical value, or until the process is manually
overridden,

Evaluating Daily Calibration Data

The initialization that must be performed by
the operator as part of the daily operation of the
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system includes making six, standard, calibration
injections, the results of which will be compared
with the standard calibration (characterization)
data. The maximum degree of the polynomial to
be fitted to the calibration data has been fixed.
The coefficients of the polynomial fitted to the
daily 6-point calibration are determined accord-
ing to Egs. (2) and (5) in the case of a fourth order
polynomial, Egs. (6) and (7) in the case of a third-
order polynomial, Egs. (8) and (9) in the case of a
second-order polynomial, or Egs. (10) and (11) in
the case of a first-order polynomial, except that r
in the correction terms of Egs. (5), {6), (8) and (10)
equals 6 rather than 60.

The daily calibration is accepted or rejected
according to a scheme based on weighted sums of
standard, normal deviations of the estimates of
the coefficients of the daily calibration data from
the estimates of the coefficients of the 10 rows of
characterization data. The standard errors of the
estimates of the coefficients of the polynomial
fitted to the characterization data are computed
from the residual mean square (ResMS) and the
inverse of X'X according to Eq. (15) (6).

(1st diagonal element of X'X ' ResMS) = s for coefficient of X term

(2nd diagonal element of X’'X 'NResMS) = 2 for coefficient of X term
(3rd diagonal element of X'X '"(ResMS) = ¢ for coefficient of X* term
(4th diagonal element of XX (ResMS) = s for coefficient of X* term

(15)
where

ResMS = (SST—Reg885)/(59 - m) (16)

The regression sum of squares (RegSS) of Eq.
(16) equals RegSS{m), where m is numerically
equal to the value of the exponent of the signifi-
cant term of highest order. The standard error of
an estimate of a coefficients from the characteri-
zation data equals the square root of 52,

The sum of weighted standard normal devia-
tions (SND) for the daily calibration is computed
according to Eq. (17). To obtain the SND the
absolute value of the difference between the esti-
mate of the coefficient 5, that was computed for
the polynomial that was fitted to the characteri-
zation data, and the estimate of the coefficient &',
that was computed for the polynomial that was
fitted to the daily calibration data, is divided by
the standard error of the estimate of the coeffi-
cient se; for the characterization data. This is
done for each consecutive term of the polynomial.
Each SND is multiplied by its corresponding
weighting factor (W). The weighted SNDs are
added together. The user provides the acceptance
criterion to be used.

3SND, = W, (|5’15%::’5| )+ Wz(l%l)

+ w?,(l%e—fﬂ%m(l&“—@)

Seb‘4

(17

The reason for using a scheme of sums of
weighted SNDs is rooted in the relationship be-
tween the operating requirements of the chamber
control system and the general shape of the con-
version equation. As stated earlier the equation
must represent a monotonic relationship between
concentration and analyzer response. When the
control system is regulating the chamber concen-
tration at midrange a linear approximation of the
polynomial relationship is usually an accurate
enough representation of the concentration-re-
sponse relationship of the analyzer to permit sat-
isfactory operation of the chamber. This may be
all that is necessary when the chamber is to be
run only at a constant, midrange concentration.
However, when time-varying concentration pro-
files are to be run, it becomes imperative to ac-
count for the curvilinear response of the analyzer,
especially at the lower and higher ends of the
concentration-response curve. In our experience
we have found that, in general, the magnitude of
the weighting factor by which successive terms
are multiplied varies inversely with the order of
the term.

An example of an acceptance criterion that
might be used in our implementation of the sys-
tem would be to add 1.5 times the SND for the X
term, 1 times the SND for the X2 term, 0.5 times
the SND for the X3 term and 0.2 times the SND
for the X* term. When this sum of weighted,
standard normal deviations of the coefficients was
greater than the user-defined acceptance crite-
rion the daily calibration would be rejected and
the operator would be required to perform a new
series of six, standard injections. Obviously, the
probability that the daily calibration will be ac-
cepted increases with the magnitude of the ac-
ceptance criterion. The user will select an accept-
ance criterion based on his own requirements.

An alternative and somewhat more straightfor-
ward approach to evaluating the daily calibration
curve would be to follow the sequence of caleula-
tions that is described in Tables 5-7 and Eq. (14)
for building a characterization data base and to
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consider each daily calibration curve as an 11th
row of data. Although this approach is somewhat
simpler than the approach that involves the use
of weighted SNDs it does not permit the user to
weight the lower ordered coefficients.

Computing the Daily Control
Equation

Each day new calibration data are compared
with the 10 rows of characterization data (the
standard calibration reference). After the daily
calibration data have been accepted a polynomial
is fitted to all data in the characterization data
base plus all of the accumulated, accepted daily
calibration data, to yield the control equation for
operating the chamber for that day. It is impor-
tant to restrict the acceptance test of the daily
data to the characterization data only, since using
the accumulating data base for this purpose
would be accompanied by gradually decreasing
values for the standard errors of the estimates of
the coefficients which would have the practical
consequence of making it increasingly difficult,
day by day, to get a daily calibration accepted.

Computer Simulation

We used a computer to mode] the interaction
between the operator and the calibration tasks
from the computer-assistance software package.
The simulation permitted us to evaluate some of
the effects on overall accuracy of calibration both
of operator performance and of different values
assigned to constants that are used at various
decision points. The simulation program was con-
structed by adding modules for control, report
generation, and operator emulation to the compu-
tation modules from the characterization and cal-
ibration tasks.

The simulation program was initialized by en-
tering various constants, data representing prop-
erties of the performance of a fictitious operator,
analyzer transfer functions, critical values for
variance ratios, report formats, number of “days”
(number of repetitions of the daily calibration for
each characterization) and the number of times
that the characterization-calibration cycle was to
be repeated (equivalent to the number of new
exposure experiments to be simulated). The end

product of a simulation run was a tabulation of
characterization and characterization results.
Printouts of raw data and the results of critical,
intermediate calculations were also available.

The operator emulation module produced nor-
mally distributed random numbers that con-
formed to a polynomial representation of the ana-
lyzer transfer function. The effects of operator
performance were demonstrated by varying the
standard deviation of the random numbers. The
ability to recover properly various transfer fune-
tions was assessed by modifying the coefficients of
the generation polynomial.

Typical values for the standard deviations de-
scribing operator performance were obtained by
analyzing calibration data from several operators
using different experimental set-ups. The coeffi-
cients for a typical analyzer transfer function
were obtained by performing a 24-point calibra-
tion using carbon tetrachloride.

Simulations were run first using the numbers
that reflected actual, typical performance of oper-
ator and analyzer. The various critical constants
were then adjusted iteratively in order to achieve
reasonable performance. Once this was achieved
the numbers that represented operator and ana-
lyzer performance were modified to model the
effects of changing operators and experimental
set-ups.
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